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Comparison of electron charge density for triplet and broken symmetry solutions obtained from different
computational methods together with the atoms-in-molecules (AIM) and electron localization function (ELF)
topological analyses support the description of these systems through the Heisenberg Hamiltonian. The reduction
of the low-energy spectrum to a purely spin Hamiltonian holds for all studied methods, although local density
approximation (LDA) exhibits some noticeable deviation. The analysis of charge difference density plots
clearly shows that the failure of LDA to describe magnetic coupling is due to the too-strong delocalization
that leads to a qualitatively incorrect electron density in the region near the nuclei. Gradient-corrected and
hybrid functionals correct this defect but in an exaggerated way. The role of mixing Fock exchange is also
discussed.

I. Introduction

Magnetic coupling in several materials is important in various
technological applications ranging from molecular magnets1,2

to high-Tc superconductors3. Recent advances in ab initio
configuration interaction methods4,5 have finally allowed re-
searchers to reach a quantitative understanding of magnetic
coupling in compounds ranging from inorganic binuclear
complexes6-10 to several ionic solids including highly symmetric
compounds,11-15 Jahn-Teller distorted solids,16-18 ladder com-
pounds,19 and a variety of superconductor parent compounds.20,21

In the configuration interaction approach the magnetic coupling
constant,Jij , entering into the definition of the Heisenberg
Hamiltonian

describing the spectrum arising solely from interactions between
total net spin Si and Sj, is obtained as the energy difference
between the appropriate spin eigenfunctions. In principle, for a
solid with localized spin moments it is necessary to include the
summation over different neighbors and account for the infinite
nature of the system. However, the magnetic coupling constant
has been shown to be a local property involving only the
interacting centers22 and, hence, a local or cluster model
approach can still be used to obtain accurate values of the
magnetic coupling constant by means of configuration interac-
tion wave functions.23 For systems with a total spin of 1/2 per
magnetic center, it is readily apparent thatJij is simply given
by the singlet-triplet difference and the choice of the sign in
eq 1 is such thatJij is positive for a ferromagnetic interaction
favoring parallel spins. A mapping procedure can be used for
more complex systems to establish a one-to-one correspondence
between the eigenstates of the Heisenberg and exact, nonrela-
tivistic Hamiltonians.11,15,24

Despite the remarkable success of the methods based on
configuration interaction applied to magnetic coupling, there
are many interesting systems that cannot be studied by this
approach because of the large size of the systems. Inorganic
binuclear complexes with voluminous ligands belong to this
category. Similarly, the description of the electronic structure
of ideal solids by means of a periodic approach precludes the
use of configuration interaction wave functions. The common
approach to these large systems relies on using a single Slater
determinant to describe the electronic density of the system of
interest. Clearly, such a choice does not always permit dealing
with spin eigenfunctions. This is particularly true for the open-
shell singlet relevant to magnetic coupling. Nevertheless, in
some cases, it is possible to indirectly approximate the energy
of the singlet by means of the so-called broken symmetry
approach; this will be discussed in some detail in the next
section.

II. An Overview of the Broken Symmetry Approach

The broken symmetry approach to open-shell singlet wave
functions and related multiplets has long been used in the
framework of unrestricted Hartree-Fock (UHF) calculations and
in the primitive versions of density functional theory (DFT),
such as XR-scattered wave methods. In fact, it is often ignored
that the first attempt to compute singlet-triplet splittings through
the XR-scattered wave method was reported about 25 years ago
by Bagus and Bennett25 and extended shortly afterward by
Ziegler et al.26 The broken symmetry approach to magnetic
coupling was suggested by Noodleman,27-30 initially also in the
framework of XR, and later Yamaguchi et al.31-34 made
significant contributions in the application of UHF to magnetic
coupling. On the other hand, the broken symmetry approach is
the commonly used procedure in solid-state physics, although
it is often referred too as the spin-polarized approach. In this
case, the magnetic coupling constant is obtained from energy
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differences between ferromagnetic and several antiferromagnetic
(within the relevant supercells) solutions. (See, for instance, refs
24 and 35.)

Because the broken symmetry approach does not lead to a
pure singlet wave function (or to a density derived from a singlet
wave function), it is necessary to relate the expectation value
of the energy of the broken symmetry solution to that of the
pure singlet. For a system with two magnetic centers with spins
S1 and S2, it has been shown that the energy of the broken
symmetry (BS) state is a weighted average of the energies of
the pure spin multiplets.29,36,37In the particular case of spin 1/2
magnetic centers, it is easy to show that the energy difference
between the high-spin solution, which approximates the triplet
state, and the BS solution, which approximates the open-shell
singlet, is just half the singlet-triplet difference. This relation-
ship is almost exact in UHF provided there is no significant
overlap between alpha and beta spin orbitals.37 In DFT there is
no direct way to prove that this is also the case, although there
are several indirect arguments that strongly suggest that the
arguments above also hold in density functional calculations
within the broken symmetry approach.24 The mapping between
Ising and exact Hamiltonians permits the derivation of these
relationships in an elegant way.15,24 In cases where the
magnitude of the overlap between alpha and beta orbitals in
the BS solution cannot be ignored, it is always possible to
explicitly compute this value according to reported methods27-30,37

or to estimate it using some of the procedures reported
recently.38,39

Nevertheless, it is important to point out that other authors
hold a point of view that differs substantially from the discussion
above. It is possible to claim that the lowest energy obtained
for a Kohn-Sham determinant with zero total z-component of
the total spin is a good approximation of the energy of the lowest
singlet state. Ruiz et al.40-43 suggested that accurate values of
the magnetic coupling constant of transition metal dinuclear
complexes can be obtained by using the hybrid B3LYP
exchange-correlation functional44,45and by considering that the
energy of the broken symmetry solution is that of the lowest
singlet. Despite the impressive numerical results, there are many
serious arguments against this point of view which suggest that
one may have the right answer for the wrong reason.24 In
particular, it is worth pointing out that in organic biradicals,
agreement with experiment within B3LYP is only achieved
when considering that the broken symmetry energy lies halfway
between singlet and triplet24,46 (vide infra). This is in line with
the work of Martin and Illas on transition metal ionic solids.47,48

They show that the magnetic coupling constant strongly varies
with the choice of the exchange-correlation functional and, in
particular, with the amount of Fock exchange included. To
conclude this discussion, it is worth mentioning that local density
approximation (LDA) is usually used in solid-sate physics to
derive magnetic properties of strongly correlated systems. This
is surprising because it is well-known that LDA incorrectly
describes such compounds as metals, thus resulting in unphysi-
cally large values for the magnetic coupling constant of these
materials.49-51

The discussion above reflects the difficulties faced by present
exchange-correlation functionals to properly describe the mag-
netic coupling mechanisms on several systems. The development
of new functionals that may overcome these difficulties requires
a detailed study of the density obtained from different possible
choices. In particular, it is necessary to better understand the
role played by hybrid functionals that mixes a part of Fock
exchange with the local or gradient-corrected functional. This

mixing seems to be the clue for the success of the density
functional description of magnetic coupling in organic biradi-
cals46 and also on transition metal compounds,47 although
different mixtures are required in each case. In this work we
present several analyses of the charge density for the triplet and
BS states that are relevant to magnetic coupling of systems with
total 1/2 spin moments. This analysis is performed for a variety
of computational schemes and includes the comparison with
the exact solution for a model system. The analysis is based on
plots of the total charge density, of the charge density analysis
topology in the sense of the atoms-in-molecules (AIM) theory,52

and on the topology of the electron localization function (ELF)
introduced by Becke and Edgecombe53 and extensively used to
analyze the chemical bond in various situations.54-57

III. Model Systems and Computational Details

In this work the analysis of electronic charge density for triplet
and BS solutions is conducted for three representative systems
that have previously been used in work concerning different
aspects of this problem.37 The charge densities of different
systems have been obtained by using nonrelativistic quantum
chemical methods. Therefore, spin polarization terms arising
from spin-orbit, hyperfine, or higher order interactions are not
taken into account. The first system is H-He-H with
d(H-He) ) 1.675 Å for which the system exhibits an
antiferromagnetic character. The choice of this model system
comes from the need to compare to exact values whenever
possible and the fact that full configuration interaction solutions
for triplet and singlet can be obtained and used as a reference
for other computational methods. This model system has also
been referred to by many different authors.34,36,37,43,58The second
system, (Cu2Cl6)2-, is the archetype of binuclear complexes1,2

and has also been studied in detail by configuraton interaction
and broken symmetry approaches.4,10,37Finally, the third system
is the high-Tc superconductor parent compound La2CuO4, or
more appropriately an embedded Cu2O11 model representation
of this material. This system is representative of strongly
correlated systems, a family of compounds that are not well
described at all by means of LDA.49-51 In fact, a proper
description of magnetic coupling in these systems requires
hybrid exchange-correlation functionals with∼50% nonlocal
Fock exchange.47,48Structural data and geometries for (Cu2Cl6)2-

and Cu2O11 are those previously used in ref 37. All calculations
are performed using exactly the same Gaussian basis sets that
were used in ref 37. Because the main goal of this paper is the
topological analysis of charge densities, we deliberately omitted
reporting numerical values for the magnetic coupling constant
and other relevant quantities. Most of these values have already
been given in ref 37 so that only new pertinent results are
included here.

Several analyses of the triplet and BS densities obtained by
different electronic structure methods have been performed. The
different electronic structure methods are UHF and various
density functional approaches beginning with LDA and includ-
ing the BLYP gradient-corrected exchange-correlation functional
which combines Becke’s exchange59 and the correlation func-
tional by Lee et al.45 The B3LYP44,45 and B3PW9144,60 hybrid
functionals have also been explored. These hybrid functionals
combine different mixtures of Becke and Fock exchange
functionals and were introduced initially by Becke to reproduce
the thermochemistry of a variety of organic molecules.44

Different hybrid functionals have also been proposed during
the past few years.61-65 It is always possible to find a given
mixing that optimizes a particular property at the expense of
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others. In particular, the density functional description of
magnetic coupling in biradicals, with magnetic orbitals es-
sentially of s and p character, is very different from the one
corresponding to magnetic coupling in transition metal com-
pounds, with magnetic orbitals essentially of d character.24 In
the former, B3LYP performs reasonably well,46 whereas a larger
amount of Fock exchange is needed in the later.47,48Therefore,
to avoid an unnecessary large set of functionals we decided to
explore just different mixtures of Becke and Fock exchange
that will be denoted as B(X)LYP, where X stands for the percent
of Fock exchange; X) 0 will lead to BLYP and X) 100 to
FLYP. The first analysis concerns density difference plots for
triplet and BS solutions obtained from a given method. The
next point also involves density differences but for the BS
solution obtained using different methods. The analysis of
density differences is complemented by topological analysis
based on the AIM theory52 and on the ELF function.53-55

The final Kohn-Sham orbitals have been obtained by means
of the Gaussian98 suite of quantum chemistry programs.66 Next,
the TopMoD code67 has been used to obtain the electronic
charge densities from the Kohn-Sham orbitals and to perform
the AIM and ELF topological analysis.

IV. Basics of AIM and ELF Topological Analysis

Both AIM and ELF methods use a topological analysis to
define atoms or bonds in a molecule by partitioning a given
function in the real space. The maxima of a given local function
define attractors, and the set of points connected to the same
maximum defines a basin. In the early seventies, Bader
suggested use of the topological analysis of electronic density.52

In this case the attractors are located at the nuclei and their
basins are analyzed in a chemical sense as atoms-in-molecules.
It is then possible to associate properties of each atom, such as
its population defined as the integration ofF(r) over a given
basin. The introduction of a bonding path permits definition of
the existence of a bond between two atoms.

The choice of the electron density as the function subject to
topological analysis is not the only chemically meaningful
possibility. It is also possible to perform the analysis of the
electron density of an electron pair much in the spirit of the
definition of chemical bond according to the well-known Lewis
structures. Becke and Edgecombe introduced the ELF orη, as

where D is a measure of the excess of total kinetic energy
resulting from Pauli repulsion55 and D0 is the kinetic energy
for an homogeneous electron gas of the same density. Within
this definition, the ELF function is limited to the [0,1] interval
and the upper limit stands for a high localization. The ELF
topological study provides additional insight to the AIM
description because it allows us to distinguish between core and
valence electrons and, in this last case, between lone pairs, V(X)
for an atom X, covalent bond, V(X,Y), between atoms X and
Y, or multicentered bonds. The mechanisms of magnetic
coupling are very sensitive to the electronic density of the
bridging ligands. Therefore, it is expected that ELF topological
analysis can provide important information about the similarities
and differences between triplet and BS densities and between
different computational methods.

V. Structural Stability and Spin Polarization

In the absence of any external magnetic field, the Hamiltonian
commutes with the total square spin operator. Hence, the total

spin is a good quantum number and all states have a definite
multiplicity. However, in the presence of an external magnetic
field, the resulting Hamiltonian commutes with the component
of total spin operator in the direction of the field only. The low-
energy states will now correspond to the spin-polarized ferro-
magnetic and antiferromagnetic solutions. Here, spin polarization
appears as a consequence of the external magnetic field. In this
section we will show that this result can also be anticipated
from the theory of gradient dynamic systems. In addition, we
will use these topological arguments to discuss the reduction
of the low-energy spectrum to that predicted by the Heisenberg
Hamiltonian.

In fact, the direct space description of the chemical bonding
as introduced in the AIM52 and in the ELF54-57 approaches relies
on the mathematical theory of dynamical systems68,69and more
particularly on the gradient dynamical systems bounded in the
euclidean spaceR3. A gradient dynamical system is the vector
field obtained by applying the gradient operator to a function
defined as continuous and derivable in all points of a given
manifold, hereR3. This function, referred to hereafter as potential
function and noted by V(r:{Ri}), depends on a set of{Ri}
parameters that form the control space. A gradient dynamical
system is characterized by its critical points which are the points
r c where∇V(r c:{Ri}) ) 0. There are different types of critical
points defined by its index, that is, the number of positive
eigenvalues of the potential second derivative matrix (the
Hessian matrix) calculated atr c. The number and the type of
critical points are constrained by a phase-like rule, the Poincare´-
Hopf formula

whereIP stands for the index of the critical pointP andø(M)
for the Euler characteristic of the manifold. A critical point is
said to be hyperbolic if none of the eigenvalues of the Hessian
matrix is zero. An important property of the dynamical systems
is thestructural stabilityinvestigated by Peixoto70 and by Palis
and Smale.71 A dynamical system is structurally stable if any
infinitesimal perturbation leaves its critical points unchanged
in number and type. A necessary condition for structural stability
is that all critical points are hyperbolic. The gradient dynamical
system of a potential function used to describe a stable physical
system should be structurally stable, whereas metaestable
systems imply structural instability. As examples in physical
chemistry we mention the explanation of the deviation from
the jellium model of the interstitial electronic density in metals72

or the predictive rules for the protonation sites in bases.73

The structural stability can be also invoked to interpret the
phenomenon of spin polarization. Let us first consider a
molecular system with two open shells as those described above
for the study of magnetic coupling. In the triplet state, the
component with total Sz ) 0 gives rise to a uniformly null spin
density, that is,FR(r) - Fâ(r ) t 0. Therefore, the dynamical
system of the spin density is structurally unstable because any
point of the molecular space is a nonhyperbolic critical point.
As a consequence, any small perturbation due to the interaction
with an external magnetic field will stabilize the Sz ) (1
components for which the spin density is not uniform and the
three triplet components will no longer be degenerated. The
situation is similar for the open-shell singlet because the spin
density is identically zero in the absence of an external magnetic
field. The removal of the constraint of the wave function to be
a spin eigenfunction stabilizes the spin-polarized solution that
corresponds to a structurally stable gradient field of the spin

∑
P

(-1)IP ) ø(M) (3)

η(r) ) 1

1 + ( D
D0

)2
(2)
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density function. Therefore, spin polarization in the presence
of vanishing but nonzero external magnetic field can be regarded
as a consequence of the structural instability of the spin density
function.

On the other hand, for other potential functions such as ELF,
the transition from the nonpolarized to the polarized spin states
is felt as a weak perturbation that leaves the gradient field
topology constant provided it is structurally stable in the initial
state. In the forthcoming discussion we will show that this is
indeed the case and, as a consequence, the charge density and
its topology remain almost the same from the triplet to the
broken symmetry solution and the systems behave according
to the Heisenberg Hamiltonian.

VI. Results from Electronic Charge Density Difference
Analysis

The reduction of magnetic coupling to a pure spin problem
governed by the Heisenberg Hamiltonian (cf. eq 1) is based on
the assumption that high and low spin states do only differ in
the total spin coupling and, hence, share the same total density.
Ab initio calculations of magnetic coupling in systems with total
spin larger than 1/2,8-15 thus presenting various low-lying
electronic states related to magnetic coupling, show that the low-
energy spectrum of this system is in agreement with that derived
from the Heisenberg Hamiltonian. This is an indirect proof of
the reduction mentioned above. A more straight comparison is
provided by the direct comparison of electronic charge densities
corresponding to the triplet and BS solutions and by the
corresponding topological analysis (vide infra). For the H-He-H
model system, Figure 1 presents electronic charge density
differences obtained by several computational methods. The plot
is along the internuclear axis and includes the “bridging” ligand,
which is an important region of space concerning superex-
change-related mechanisms. This plot already shows an impor-
tant result: the density differences are almost insignificant.
(Notice the small values in the ordinate axis.) A second
important result concerns the differences between different
methods. The smallest difference between triplet and BS
densities correspond to UHF and the largest to LDA, with the
hybrid B3LYP and B3PW91 lying somewhere in between. The
same description is obtained for both (Cu2Cl6)2- and Cu2O11,

although the density differences are somewhat larger, especially
for LDA. The results for Cu2O11 are reported in Figure 2.
Henceforth, the analysis of triplet and broken symmetry densities
reveals that these systems do indeed follow the behavior
predicted by the Heisenberg Hamiltonian, the deviations being
larger for LDA in all cases.

The largest deviation of LDA from the Heisenberg behavior
is correlated with the largest deviation from the exact density,
for the present basis set, obtained from a full configuration
interaction (FCI) wave function. The difference density between
a given method based on broken symmetry and the exact
solution for the open-shell singlet of H-He-H is presented in
Figure 3 for points along the internuclear axis. Here, the values
on the density axes are somehow larger and the changes are
noticeable. The UHF density is surprisingly close to the FCI
one, and the LDA deviates the most. This deviation between
the FCI singlet and the different BS solutions is also found when
comparing the FCI triplet to the Ms ) 1 unrestricted solution.

Figure 1. Difference of charge electron density [in atomic units (au)]
for the triplet and broken symmetry solutions of the H-He-H model
system as obtained from different computational methods.

Figure 2. Difference of charge electron density (in au) for the triplet
and broken symmetry solutions of the Cu2O11 cluster model representa-
tion of La2CuO4 system as obtained by different computational methods.

Figure 3. Difference of charge electron density (in au) corresponding
to the broken symmetry solution of the H-He-H model system as
obtained from a given method and that obtained from the exact FCI
singlet wave function.
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This is not at all an unexpected result, because this is effectively
a Heisenberg system. The charge density difference between
BS and triplet is almost zero and, hence, both deviate almost
equally from the exact FCI solution. In addition, Figure 3 shows
that LDA largely underestimates the electronic charge density
in the region near the nuclei, especially on that corresponding
to the bridging ligand. This large underestimation of electronic
charge density in LDA reveals the tendency of this approach
to delocalize the density in excess, thus resulting more in a
metallic description than on a magnetic system. This is in
agreement with the results arising from Figure 1 that show that
LDA deviates considerably from a magnetic system with
localized spins. Likewise, this result permits a better understand-
ing of the failure of LDA to properly describe the electronic
structure of NiO, La2CuO4, and other compounds49-51 generally
termed strongly correlated systems in the framework on solid-
state physics. Gradient-corrected (BLYP) and hybrid (B3LYP)
exchange-correlation functionals show a behavior that is the
opposite of LDA. The exaggerated tendency of LDA to
delocalize is reversed, but deviations from the exact density are
smaller. In a way, gradient-corrected and hybrid functionals
introduce changes in the electronic charge density that are in
the right direction, but the corrections to LDA appear to be too
large. Therefore, it is possible that the numerical success of some
of the existing functionals relies, at least in part, on some sort
of error cancellation. On the other hand, the closeness between
UHF and exact densities supports the idea of several authors74-77

to introduce electronic correlation effects through direct ap-
plication of correlation functionals on the HF density according
to the theorem of Levy.78 The widely used correlation functional
developed by Lee et al.45 is based precisely on the earlier work
of Colle and Salvetti with the correlation factor75. Unfortunately,
the existing correlation functionals do not seem to be accurate
enough and may fail to reproduce some interaction energies.79

This is what prompted Gill et al.80 to suggest that better
numerical values can be obtained by swapping out the exact
exchange and swapping in a local or semi-local exchange
correlation energy. This has since become quite the standard
practice.

The failure of present exchange-correlation functionals to
properly describe magnetic coupling in transition metal com-
pounds, except perhaps accepting that in density functional
calculations the BS approach leads to a pure singlet state,43 has
been attributed to deficiencies in the exchange functional.47,48

Martin and Illas have suggested that reasonable values of the
magnetic coupling constant of strongly correlated systems can
be obtained by increasing the contribution of the Fock exchange
in the hybrid functionals. Comparing the exact density with that
obtained by increasing the contribution of the Fock exchange
allows us to investigate the effect of this mixing in the electronic
charge density. Such a comparison is presented in Figure 4 for
hybrid schemes that are generically termed B(X)LYP, where
X stands for the amount of Fock exchange. Hence, X) 0 leads
to the BLYP gradient-corrected functional and X) 100 to
F-LYP or UHF plus the LYP correlation functional. Figure 4
permits us to understand the rather good numerical success of
the functional proposed by Martin and Illas that includes just
50% of Fock exchange. Because, in this particular case, UHF
provides the best approach to FCI, it is not surprising that
increasing X leads to improvement in the total electronic charge
density. However, the important message from Figure 4 is that
the deviation of the density obtained from gradient-corrected
and B3LYP or B3PW91 hybrid functionals with respect to the

exact value can be attributed to the exchange functional and
supports the ideas of previous work in the same direction.47,48

Having discussed the H-He-H at length we now turn our
attention to both (Cu2Cl6)2- and Cu2O11 systems. In this case it
is not possible to obtain the FCI density so the discussion is
limited to comparison between approximate methods using UHF
as the reference density. Because triplet and BS solutions lead
to extremely similar densities, the forthcoming discussion is
based on comparing electronic charge densities for the triplet
state. The electronic charge density differences for (Cu2Cl6)2-

is plotted along the line connecting the one Cu magnetic center
and one Cl bridging ligand. Results are reported in Figures 5
and 6. Similarly, the electronic charge density of Cu2O11 is
plotted along the central Cu-O-Cu line. The electronic charge
density differences are reported in Figures 7 and 8. The
electronic charge density differences for both systems exhibit
some remarkable figures. Notice the enormous difference
between LDA and all other methods, especially near the

Figure 4. Difference of charge electron density (in au) corresponding
to the broken symmetry solution of the H-He-H model system as
obtained from an hybrid B(X)LYP scheme with X being the amount
of Fock exchange and that obtained from the exact FCI singlet wave
function.

Figure 5. Difference of charge electron density (in au) corresponding
to the triplet solution of the (Cu2Cl6)2- system as obtained from a given
method and that from UHF.
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magnetic centers. The difference is so large that differences
between different methods are only apparent if the scale is
conveniently increased as in Figures 6 and 8. The exceedingly
large deficit of density near the nuclei in LDA relative to all
other methods is in agreement with the behavior already
described by the H-He-H model system and fully supports
the conclusions reached above. The most detailed plots in
Figures 6 and 8 reveal considerable differences between UHF
and the different hybrid functionals. The differences are even
larger for gradient-corrected functionals, although much smaller
than those found for LDA and are not reported in the figures.
In the (Cu2Cl6)2- inorganic binuclear complex the magnetic
coupling constant is really small,81 and it is difficult to relate
changes in the total electron charge density to changes in the
magnetic coupling constant.

However, for La2CuO4 the situation is more transparent
because of the rather large value of the magnetic coupling
constant. Hence, in the Cu2O11-cluster-model representation of
this compound, the largest differences in total charge density
between UHF and other methods can be related to changes in

the calculated coupling constant. The UHF value is 20-25%
of the experimental value; LDA and gradient-corrected func-
tionals predict values that are too large. The failure of LDA to
properly describe the electronic and magnetic structure of La2-
CuO4 and related compounds has also been reported by several
authors,49,82 although LDA has generally been used to extract
effective parameters for a more elaborate treatment.83 Several
approaches with different philosophies have been proposed to
amend the LDA failure in describing highly correlated systems.
Thus, LDA+U84-87 and LDA+SIC88,89corrections to LDA have
been reported from the field of solid-state physics, whereas
hybrid DF approaches have been proposed from quantum
chemistry. For this system, B3LYP is out by a factor of 2 and
the B(50)LYP leads to a reasonable value. The electronic charge
density difference plots in Figure 8 show significant differences
in the density obtained by the different methods that are related
to the calculated magnetic coupling constant. The difference
between UHF and B(50)LYP is not very large but enough to
change the calculated magnetic coupling constant by a factor
of almost five.

VII. Results from AIM and ELF Topological Analyses

Both, AIM and ELF topological analyses were performed
for H-He-H and (Cu2Cl6)2- systems. These analyses produced
quite a large set of data concerning atomic and spin populations,
fluctuations, and basin volumes. Restricting ourselves to the
main results we first note that, within each method, the topology
of the triplet and BS densities remains the same. Both differ
through their spin densities only and not through their spatial
localization. Accordingly, the perturbation induced by reversing
one spin remains so local that it does not modify the surround-
ings supporting the reduction of the Hamiltonian to the
Heisenberg form.

The ELF analysis of the triplet state electron density obtained
by different methods reveals a rather interesting modification
of the topology. When the calculated value ofJ increases, for
example, from UHF to LDA, the bonding basins V(Cu,Cl) inside
and outside the molecule tend to vanish and, simultaneously,
the V(Cl) lone pairs get an excess of population. This effect is
clearly seen when comparing Figures 9 and 10, which present
a three-dimensional visualization of ELF as obtained from the
UHF and LDA electron density, respectively. In terms of the
ELF analysis the LDA description appears to be more ionic.

Figure 6. Detail of Figure 5 around a Cu atom.

Figure 7. Difference of charge electron density (in au) corresponding
to the triplet solution of the Cu2Ol1-cluster-model representation of
La2CuO4 system as obtained from a given method and that obtained
from UHF.

Figure 8. Detail of Figure 7.
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This conclusion may seem to be paradoxical because the
comparison of charge densities revealed that LDA tends to
delocalize in excess the electron density out of the nuclei.
However, the tendency of LDA to describe the systems as
metallic includes the fact that increasing delocalization results
in a decrease of the covalent contribution, and the loss in
electron population in the bonding basin increases the population
in the lone pairs. The electronic density flows to the molecular
edge and delocalizes as much as possible. Hence, the ELF
analysis of LDA is consistent with the comparison of charge
densities in the previous section. This particular aspect of LDA
is clearly seen in the ELF analysis only. The AIM analysis only
shows a very small decrease of the population of the edge anions
relative to the bridge ones that is larger than in any other method.
This difference between AIM and ELF can be explained easily
by looking at the position of the V(Cu,Cl) basins along the
Cu-Cl line. These basins are very close to Cl just showing
that Cl is the most electronegative atom. In AIM, the density
corresponding to these bonding basins will be attributed largely
to Cl; thus, a modification in the ELF population of the
V(Cu,Cl) basin will be located mainly in the Cl atomic basins
defined in the AIM analysis. Because these modifications do
only affect the same atomic basin there are no noticeable
differences in the AIM analysis.

VIII. Conclusions

The comparison of electron charge density for triplet and
broken symmetry solutions obtained from different methods
together with the AIM and ELF topological analyses supports

the description of these systems through the Heisenberg
Hamiltonian. The reduction of the low-energy spectrum to a
purely spin Hamiltonian holds for all studied methods, although
LDA exhibits some noticeable deviation. Likewise, for the
H-He-H model system, the LDA electron charge density is
the one that deviates most from the exact FCI and, surprisingly
enough, UHF is the one that deviates least. The gradient-
corrected and hybrid functionals correct the deficiencies of LDA
in the right direction but into too large an extent. The B3LYP
electron charge density for the broken symmetry solution
deviates considerably from the exact values for the lowest singlet
for this model system. Hence, the claim that the broken
symmetry B3LYP density functional charge density is very close
to that of the corresponding singlet state is not supported.

For the (Cu2Cl6)2- and Cu2O11 systems, similar conclusions
are found. LDA exceedingly delocalizes the electron charge
density in the region near the nuclei and, hence, leads to values
of the magnetic coupling constant that are too large. On the
other hand, the comparison of total electron charge density and
topology for different gradient-corrected and hybrid exchange
functionals reveals significant differences. In particular, the use
of gradient-corrected functionals corrects the deficiencies of
LDA but too strongly. Introduction of Fock exchange tends to
reduce these differences but there is no a priori way to decide
the precise mixing required, in particular, to obtain reliable
values of the magnetic coupling constant.
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